ERRATA

V.V. Vlasov, N.I. Grineva and D.G. Knorre, Exposed and buried guanosine residues in tRNA₁^{Val} from yeast, FEBS Letters 20 (1972) 66.

p. 68: The following table should be added to this publication:

Table 1
Relative amounts of modified oligonucleotides in pyrimidyl-ribonuclease digests of yeast tRNA Val modified with MepURC1.

	$\alpha = \frac{\text{content of A}_{350} \text{ in the peak of modified oligonucleotide}}{\text{total A}_{350} \text{ of the digest}}$				Change of relative
Oligonucleotide modified	Conditions of tertiary modification to 8%	structure αL,	Conditions of stability of tertiary structure α_S , modification to 1.5%	α, calculated for the case of equal reactivity of all guanosine residues of tRNA	reactivity due to tertiary structure formation α_S/α_L
$G-m'A-Up \atop G-Up$ }	0.09	0.12	0.07	0.10	0.58
2 G-Cp	0.09	0.12	0.11	0.10	0.92
I-A-Cp	0.01	0.012	0.037	0.01*	3.0
G-G-Cp	0.08	0.11	0.044	0.10	0.4
A-G-Tp A-G-Dp }	0.11	0.10	0.013	0.10	0.12
$_{m'G-G-Up}^{G-G-Dp}\}$	0.20	0.21	0.26	0.20	1.2

^{*} Guanosine is 5 times as reactive as inosine (Data obtained in our laboratory by G. Karpova).

A. Chabas and S. Grisolia, Effect of carbamyl phosphate on stability of some enzymes of the urea cycle; high sensitivity of glutamate dehydrogenase, FEBS Letters 21 (1972) 25–28.

p. 27, right column, Table 3 headings should read as:

Addi	itions	Activity		
CP (µmoles)	ATP (µmoles)	1 hr	2 hr	

D.F. Hoelzl Wallach, B. Kranz, E. Ferber and H. Fischer, Affinity density perturbation: a new fractionation principle and its illustration in a membrane separation, FEBS Letters 21 (1972) 29-33.

- p. 30, right column, paragraph 2, line 4, first word should read: gluturaldehyde. Same paragraph, line 17, constant should read: $K_A = 5.38 \times 10^3 \text{ l/mole}$.
- p. 31, left column, paragraph 3, line 5, should read: reacted at 0° . 0.4 mg Na₂S₂O₅ in 0.5 ml 0.01 M.
- p. 33, in Acknowledgements, last line should read: scopic aid and to Dr. Stirm for producing the phage.